Exchange Rates and Uncovered Interest Differentials: The Role of Permanent Monetary Shocks

Stephanie Schmitt-Grohé and Martín Uribe

Columbia University

June 5, 2019
Motivation

• Existing empirical work assumes that monetary shocks come in only one flavor.

• However, recent work has shown that it is important to distinguish between transitory and permanent monetary disturbances. Permanent monetary policy shocks, i.e., shocks to long-run inflation expectations, have been shown to be at least as important as transitory monetary policy shocks for explaining the dynamics of changes in output, inflation, and the nominal interest rate in the United States.

• Motivated by these findings, the present paper estimates the effects of monetary policy shocks on exchange rates within an empirical framework that distinguishes transitory from permanent monetary shocks.
This paper finds that:

• permanent monetary shocks explain the majority of short-run movements in nominal exchange rates.

• there is no exchange-rate overshooting in response to monetary shocks, suggesting that existing overshooting results may be the consequence of confounding permanent and transitory impulses.

• transitory tightenings cause deviations from uncovered interest-rate parity in favor of domestic assets, whereas permanent tightenings cause deviations in favor of foreign assets.
Selected Previous Related Literature
Dornbusch (1976): Exchange Rate Overshooting

\[
\text{UIP: } (1 + i_t) = (1 + i^*_t) \left(\frac{S_t + 1}{S_t} \right)
\]

Money demand: \[\frac{M_t}{P_t} = L(i_t, Y) \]

Long-run neutrality: as \(t \to \infty \) \[P_t = S_t P^*_t \]

\(i_t \) = domestic nominal interest rate
\(i^*_t \) = foreign nominal interest rate
\(S_t \) = exchange rate (domestic-currency price of foreign currency)
\(M_t \) = domestic money supply
\(P_t \) = domestic price level.

Experiment: A contractionary monetary shock, \(M_0 \downarrow \).
Dornbusch’s Overshooting Result

The figure depicts the dynamics of the nominal exchange rate, S_t, in response to a reduction in the money supply in period 0, as predicted by Dornbusch’s overshooting model. S_t is defined as the domestic-currency price of foreign currency.
Empirical Evidence on Exchange Rate Overshooting

Tests of the overshooting result and UIP:

1.) A monetary tightening causes an appreciation of the domestic currency with an overshooting effect either on impact (Kim and Roubini, 2000; Faust and Rogers, 2003; Faust Rogers, Swanson, and Wright, 2003; Bjørnland, 2009; Kim, Moon, and Velasco, 2017) or with a delay (Eichenbaum and Evans, 1995; Scholl and Uhlig, 2008). Main difference across these papers is how the monetary policy shock is identified.

2.) UIP, conditional on a monetary shock, fails, contradicting a key assumption of Dornbusch’s model. Specifically, a domestic tightening generates excess returns on domestic assets.
Effects of Permanent Monetary Policy Shocks on Real Exchange Rates

An increase in the U.S. inflation target causes a temporary depreciation of the U.S. real exchange rate (De Michelis and Iacoviello, 2016).

Effects of Romer and Romer Shocks on Exchange Rates

Eichenbaum and Evans (1995, Fig. IV) and Hettig, Müller, and Wolf (2018) find that the exchange rate overshooting result, immediate or delayed, is not robust to this type of identification scheme.
This paper
Empirical Model

The model is an open-economy extension of Uribe (2018). Let

\[
\begin{bmatrix}
 y_t \\
 \pi_t \\
 i_t \\
 \epsilon_t \\
 i^*_t
\end{bmatrix}
= \begin{bmatrix}
 \text{log of real US output} \\
 \text{US inflation} \\
 \text{US nominal interest rate} \\
 \text{change in dollar exchange rate} \\
 \text{foreign nominal interest rate}
\end{bmatrix}
\]

The cyclical components of these variables are assumed to be stationary (though unobservable):

\[
\begin{bmatrix}
 \hat{y}_t \\
 \hat{\pi}_t \\
 \hat{i}_t \\
 \hat{\epsilon}_t \\
 \hat{i}^*_t
\end{bmatrix}
\equiv \begin{bmatrix}
 y_t - X_t \\
 \pi_t - X_t^m \\
 i_t - X_t^m \\
 \epsilon_t - X_t^m + X_t^{m*} \\
 i^*_t - X_t^{m*}
\end{bmatrix}
\]

where \(X_t = \) permanent nonmonetary shock (output trend); \(X_t^m = \) permanent monetary shock; \(X_t^{m*} = \) foreign permanent monetary shock.
The cyclical components follow an AR process

\[
\begin{bmatrix}
\hat{y}_t \\
\hat{\pi}_t \\
\hat{i}_t \\
\hat{\epsilon}_t \\
\hat{i}^*_t
\end{bmatrix} = B(L) \begin{bmatrix}
\hat{y}_{t-1} \\
\hat{\pi}_{t-1} \\
\hat{i}_{t-1} \\
\hat{\epsilon}_{t-1} \\
\hat{i}^*_{t-1}
\end{bmatrix} + C \begin{bmatrix}
\Delta X^m_t \\
\Delta i_t \\
\Delta X^m_{t-1} \\
\Delta Z_t \\
\Delta X'^m_t
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Delta X^m_t \\
\Delta Z_t \\
\Delta X^m_{t-1} \\
\Delta Z_{t-1} \\
\Delta X'^m_t
\end{bmatrix} = \rho \begin{bmatrix}
\Delta X^m_{t-1} \\
\Delta Z_{t-1} \\
\Delta X^m_{t-1} \\
\Delta Z_{t-1} \\
\Delta X'^m_{t-1}
\end{bmatrix} + \psi \begin{bmatrix}
\nu^1_t \\
\nu^2_t \\
\nu^3_t \\
\nu^4_t \\
\nu^5_t
\end{bmatrix},
\]

where \(X^m_t = \) permanent monetary shock; \(Z^m_t = \) transitory monetary shock; \(X_t = \) permanent nonmonetary shock; \(Z_t = \) transitory nonmonetary shock; and \(X'^m_t = \) foreign permanent monetary shock. Innovations \(\nu^i_t \sim iid \mathcal{N}(0, 1), \) for \(i = 1, \ldots, 5, \) \(\rho\) and \(\psi\) are diagonal \(5 \times 5\) matrices. (To simplify the exposition constants are omitted.)
5 Observables and corresponding observation equations

(1) Δy_t, output growth rate.
(2) $r_t \equiv i_t - \pi_t$, interest-rate-inflation differential.
(3) Δi_t, time difference of domestic nominal rate.
(4) $\Delta \epsilon_t$, time difference of devaluation rate.
(5) Δi^*_t, time difference of foreign nominal rate.

We then have the following observation equations:

\begin{align*}
\Delta y_t &= \hat{y}_t - \hat{y}_{t-1} + \Delta X_t \\
\Delta i_t &= \hat{i}_t - \hat{i}_{t-1} + \Delta X^m_t \\
\Delta \epsilon_t &= \hat{\epsilon}_t - \hat{\epsilon}_{t-1} + \Delta X^m_t - \Delta X^m_{t*} \\
\Delta i^*_t &= \hat{i}^*_t - \hat{i}^*_{t-1} + \Delta X^m_{t*}
\end{align*}
Identification Assumptions

1. Output (y_t) is cointegrated with the permanent nonmonetary shock (X_t).

2. Inflation (π_t) and the nominal interest rate (i_t) are cointegrated with the permanent monetary shock (X^m_t).

3. The foreign nominal interest rate (i^*_t) is cointegrated with the foreign permanent monetary shock ($X^m^*_t$).

4. The depreciation rate (ϵ_t) is cointegrated with ($X^m_t - X^m^*_t$).

5. A transitory monetary shock that increases the interest rate ($z^m_t \uparrow$) has a nonpositive impact effect on output and inflation: $C_{12}, C_{22} \leq 0$. (Implemented by imposing restrictions on prior distribution.)

At the posterior mean, we find that the parameters are identifiable based on the Iskrev (2010) test.
United States – United Kingdom
Impulse Responses to Permanent and Transitory U.S. Monetary Shocks

Foreign country is the United Kingdom

Solid lines: posterior mean estimates from MCMC chain of length 1 million.
Broken lines: asymmetric 95-percent Sims-Zha error bands.
Impulse Responses of U.S. Inflation and Output to Permanent and Transitory U.S. Monetary Shocks: United Kingdom
The Importance of Permanent Monetary Shocks for Exchange Rates

Forecast Error Variance Decomposition at Horizon 12 months. US-UK pair

<table>
<thead>
<tr>
<th></th>
<th>Δy_t</th>
<th>π_t</th>
<th>i_t</th>
<th>$\ln S_t$</th>
<th>$\ln e_t$</th>
<th>i^*_t</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Monetary Shock, X^m_t</td>
<td>0.10</td>
<td>0.83</td>
<td>0.23</td>
<td>0.23</td>
<td>0.00</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Transitory Monetary Shock, z^m_t</td>
<td>0.08</td>
<td>0.01</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Permanent Nonmonetary Shock, X_t</td>
<td>0.26</td>
<td>0.07</td>
<td>0.47</td>
<td>0.50</td>
<td>0.98</td>
<td>0.06</td>
<td>0.93</td>
</tr>
<tr>
<td>Transitory Nonmonetary Shock, z_t</td>
<td>0.52</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Permanent For. Mon. Shock, X^{m*}_t</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.26</td>
<td>0.00</td>
<td>0.92</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Notes. Δy_t, U.S. output growth; π_t, U.S. inflation; i_t, the Federal Funds rate; $\ln S_t$, dollar-pound nominal exchange rate; $\ln e_t$, the dollar-pound real exchange rate; i^*_t, U.K. nominal interest rate; UID = $i_t - i^*_t - \epsilon_{t+1}$, uncovered interest rate differential; $\epsilon_t \equiv \ln(S_t/S_{t-1})$, dollar devaluation rate.
Conclusions

The innovation of the present paper is to allow for permanent and transitory monetary shocks. Estimation on monthly post-Bretton-Woods data from the United States, the United Kingdom, and Japan shows that:

- permanent monetary shocks explain the majority of short-run movements in nominal exchange rates.

- there is no exchange-rate overshooting, either of the immediate or delayed type, in response to monetary shocks, suggesting that existing overshooting results may be the consequence of confounding permanent and transitory impulses.

- transitory tightenings cause deviations from uncovered interest-rate parity in favor of domestic assets, whereas permanent tightenings cause deviations in favor of foreign assets.
Extras
Measurement Errors

\[o_t = \begin{bmatrix} \Delta y_t \\ r_t \\ \Delta i_t \\ \Delta \epsilon_t \\ \Delta i_t^* \end{bmatrix} + \mu_t \] \tag{2}

where \(\mu_t \) is a 5-by-1 vector of measurement errors distributed i.i.d. \(N(\emptyset, R) \), with \(R \) diagonal.
Estimation

Let

\[\hat{Y}_t \equiv \begin{bmatrix} \hat{y}_t \\ \hat{\pi}_t \\ \hat{i}_t \\ \hat{\epsilon}_t \\ \hat{i}^*_t \end{bmatrix}; \quad u_t \equiv \begin{bmatrix} \Delta X_t^m \\ z_t^m \\ \Delta X_t \\ z_t \\ \Delta X_t^{m*} \end{bmatrix}; \quad \nu_t \equiv \begin{bmatrix} \nu_1^t \\ \nu_2^t \\ \nu_3^t \\ \nu_4^t \\ \nu_5^t \end{bmatrix} \]

Assuming a lag length of \(L \) months, the empirical model can be written as

\[\hat{Y}_t = \sum_{i=1}^{L} B_i \hat{Y}_{t-i} + C u_t \]

(3)

\[u_t = \rho u_{t-1} + \psi \nu_t \]

(4)
Estimation: State Space Form

Let

\[\xi_t \equiv \begin{bmatrix} \hat{Y}_t \\ \hat{Y}_{t-1} \\ \vdots \\ \hat{Y}_{t-L+1} \\ u_t \end{bmatrix} \]

Then the system composed of equations (1), (2), (3), and (4) can be written as

\[\xi_{t+1} = F\xi_t + P\nu_{t+1} \]
\[o_t = H'\xi_t + \mu_t \]

We wish to estimate the matrices \(F, P, \) and \(H \), which are known functions of the primitive matrices \(B_i, i = 1, \ldots, L, C, \rho, \psi, \) and \(R \). The state vector \(\xi_t \) is latent, and the vector \(o_t \) is observable. The likelihood of the data can be readily obtained, for example, via the Kalman filter. We estimate the model using Bayesian techniques.
Prior Distributions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Mean.</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main diagonal elements of B_1</td>
<td>Normal</td>
<td>0.95</td>
<td>0.5</td>
</tr>
<tr>
<td>All other elements of B_i, $i = 1, \ldots, L$</td>
<td>Normal</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>C_{21}, C_{31}, C_{55}</td>
<td>Normal</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$-C_{12}, -C_{22}$</td>
<td>Gamma</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>All other estimated elements of C</td>
<td>Normal</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ρ_{ii}, $i = 1, 2, 3, 5$</td>
<td>Beta</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>ρ_{44}</td>
<td>Beta</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>ψ_{ii}, $i = 1, \ldots, 5$</td>
<td>Gamma</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R_{ii}</td>
<td>Uniform</td>
<td>$\left[0, \frac{\text{var}(o_t)}{10}\right]$</td>
<td>$\frac{\text{var}(o_t)}{10\times2}$</td>
</tr>
<tr>
<td>Mean of o_t</td>
<td>Normal</td>
<td>mean(o_t)</td>
<td>$\sqrt{\frac{\text{var}(o_t)}{T}}$</td>
</tr>
</tbody>
</table>

Notes. The lag length, L, is assumed to be 6 months. The sample length, T, equals 513 months.
Variant: The Real Exchange Rate

To estimate the effects of temporary and permanent monetary shocks on the real exchange rate, e_t,

$$e_t = \ln \left(\frac{S_t P_t^*}{P_t} \right),$$

we replace the nominal depreciation rate,

$$\epsilon_t = \ln S_t - \ln S_{t-1},$$

by the real depreciation rate,

$$\epsilon^r_t = e_t - e_{t-1}.$$
The Data

- Domestic country: U.S.; Foreign country: U.K. or Japan

- $y_t = \text{U.S. industrial production (Source: OECD MEI)}$

- $P_t = \text{U.S. CPI index (Source: OECD MEI)}$

- $i_t = \text{Federal Funds rate (Source: FRB)}$

- $S_t = \$–£$ or $\$–¥$ nominal exchange rate (Source: FRED)

- $i^*_t = \text{Official bank rate (Source: BOE) or Call rate (Source: BOJ)}$

- $P^*_t = \text{U.K. or JP CPI index (Source: OECD MEI)}$
U.S. Inflation and Its Permanent Component

\[X^m_t \]
JAPAN
Impulse Responses to Permanent and Transitory U.S. Monetary Shocks: Foreign country is Japan

Solid lines: posterior mean estimates from MCMC chain of length 1 million.
Broken lines: asymmetric 95-percent Sims-Zha error bands.
Impulse Responses of U.S. Inflation and Output to Permanent and Transitory U.S. Monetary Shocks: Foreign country is Japan

Permanent US Interest-Rate Shock
US inflation rate, π_t

Transitory US Interest-Rate Shock
US Inflation Rate, π_t

Permanent US Interest-Rate Shock
US output, y_t

Transitory US Interest-Rate Shock
US output, y_t
The Importance of Permanent Monetary Shocks for Exchange Rates

Forecast Error Variance Decomposition at Horizon 36 months. US-Japan pair

<table>
<thead>
<tr>
<th></th>
<th>Δy_t</th>
<th>π_t</th>
<th>i_t</th>
<th>$\ln S_t$</th>
<th>$\ln e_t$</th>
<th>i_t^*</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent M Shock, X^m_t</td>
<td>0.26</td>
<td>0.82</td>
<td>0.57</td>
<td>0.50</td>
<td>0.01</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>Transitory M Shock, z^m_t</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Permanent NonM Shock, X_t</td>
<td>0.18</td>
<td>0.07</td>
<td>0.33</td>
<td>0.35</td>
<td>0.98</td>
<td>0.06</td>
<td>0.81</td>
</tr>
<tr>
<td>Transitory NonM Shock, z_t</td>
<td>0.44</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Permanent Foreign M Shock, $X^m_{t^*}$</td>
<td>0.08</td>
<td>0.01</td>
<td>0.02</td>
<td>0.12</td>
<td>0.00</td>
<td>0.93</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Notes. Uncovered interest rate differential (UID) = $i_t - i_t^* - \epsilon_{t+1}$. Δy_t, U.S. output growth; π_t, U.S. inflation; i_t, the Federal Funds rate; $\ln S_t$, dollar-yen nominal exchange rate; $\ln e_t$, the dollar-yen real exchange rate; i_t^*, Japanese nominal interest rate; $\epsilon_t \equiv \ln(S_t/S_{t-1})$, devaluation rate.
Model with only one permanent monetary shock

\[
\begin{bmatrix}
\Delta X^m_{t+1} \\
z^m_{t+1} \\
\Delta X_{t+1} \\
z_{t+1} \\
X^m_{t+1} - X^m_{t+1}
\end{bmatrix} = \rho
\begin{bmatrix}
\Delta X^m_t \\
z^m_t \\
\Delta X_{t} \\
z_{t} \\
X^m_{t} - X^m_{t*}
\end{bmatrix} + \psi
\begin{bmatrix}
\nu^1_{t+1} \\
\nu^2_{t+1} \\
\nu^3_{t+1} \\
\nu^4_{t+1} \\
\nu^5_{t+1}
\end{bmatrix}
\]

The assumption that \(X^m_t - X^m_{t*}\) is stationary induces stationarity in both the interest rate differential, \(i_t - i^*_t\), and the devaluation rate, \(\epsilon_t \equiv \ln(S_t/S_{t-1})\). \(\rightarrow\) We can include \(\epsilon_t\) as an observable.

\[
o_t = \begin{bmatrix}
\Delta y_t \\
r_t \\
\Delta i_t \\
\epsilon_t \\
i_t - i^*_t
\end{bmatrix} + \mu_t
\]
Impulse Responses to Permanent and Transitory U.S. Monetary Shocks Under Cointegrated U.S. and U.K. Monetary Policies

Solid lines: posterior mean estimates from MCMC chain of length 1 million.
Broken lines: asymmetric 95-percent Sims-Zha error bands.
Excluding the Post-Volcker Era

• Kim, Moon, and Velasco (JPE, 2017) argue that delayed overshooting is circumscribed to the pre-1987 period. (Instantaneous overshooting is a feature of the post Volcker sample.)

• The present paper, by contrast, argues that once one allows for both transitory and permanent monetary shocks, the overshooting effect, instantaneous or delayed, disappears altogether.

• The next figure shows that our finding of no overshooting is robust to truncating the sample in December of 1987, the end of the Volcker era.
No Exchange Rate Overshooting Pre 1987

The Importance of Permanent Monetary Shocks for Exchange Rates

Forecast Error Variance Decomposition at Horizon 36 months. US-UK pair

<table>
<thead>
<tr>
<th></th>
<th>Δy_t</th>
<th>π_t</th>
<th>i_t</th>
<th>$\ln S_t$</th>
<th>$\ln e_t$</th>
<th>i_t^*</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent M Shock, X_t^m</td>
<td>0.10</td>
<td>0.84</td>
<td>0.35</td>
<td>0.37</td>
<td>0.07</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Transitory M Shock, z_t^m</td>
<td>0.08</td>
<td>0.01</td>
<td>0.06</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Permanent NonM Shock, X_t</td>
<td>0.27</td>
<td>0.06</td>
<td>0.51</td>
<td>0.05</td>
<td>0.71</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>Transitory NonM Shock, z_t</td>
<td>0.50</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Permanent Foreign M Shock, X_t^m*</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.58</td>
<td>0.00</td>
<td>0.94</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Notes. Δy_t, U.S. output growth; π_t, U.S. inflation; i_t, the Federal Funds rate; $\ln S_t$, dollar-pound nominal exchange rate; $\ln e_t$, the dollar-pound real exchange rate; i_t^*, U.K. nominal interest rate; UID = $i_t - i_t^* - \epsilon_{t+1}$, uncovered interest rate differential; $\epsilon_t \equiv \ln(S_t/S_{t-1})$, dollar devaluation rate.
Forecast Error Variance Decomposition at Horizons between 12 and 48 months: United Kingdom

<table>
<thead>
<tr>
<th></th>
<th>Δy_t</th>
<th>π_t</th>
<th>i_t</th>
<th>$\ln S_t$</th>
<th>$\ln e_t$</th>
<th>i_t^*</th>
<th>uid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Monetary Shock, X^m_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.10</td>
<td>0.83</td>
<td>0.23</td>
<td>0.23</td>
<td>0.00</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.10</td>
<td>0.83</td>
<td>0.31</td>
<td>0.36</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.10</td>
<td>0.84</td>
<td>0.35</td>
<td>0.37</td>
<td>0.07</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.10</td>
<td>0.85</td>
<td>0.37</td>
<td>0.36</td>
<td>0.10</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Transitory Monetary Shock, z^m_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.08</td>
<td>0.01</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.08</td>
<td>0.01</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.08</td>
<td>0.01</td>
<td>0.06</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.08</td>
<td>0.01</td>
<td>0.05</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Permanent Nonmonetary Shock, X_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.26</td>
<td>0.07</td>
<td>0.47</td>
<td>0.50</td>
<td>0.98</td>
<td>0.06</td>
<td>0.93</td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.27</td>
<td>0.07</td>
<td>0.51</td>
<td>0.14</td>
<td>0.88</td>
<td>0.05</td>
<td>0.91</td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.27</td>
<td>0.06</td>
<td>0.51</td>
<td>0.05</td>
<td>0.71</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.27</td>
<td>0.06</td>
<td>0.49</td>
<td>0.03</td>
<td>0.59</td>
<td>0.04</td>
<td>0.89</td>
</tr>
<tr>
<td>Transitory Nonmonetary Shock, z_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.52</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.51</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.50</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.50</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Permanent Foreign Monetary Shock, X^m_{m}*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.26</td>
<td>0.00</td>
<td>0.92</td>
<td>0.01</td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
<td>0.50</td>
<td>0.00</td>
<td>0.93</td>
<td>0.03</td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.58</td>
<td>0.00</td>
<td>0.94</td>
<td>0.04</td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.05</td>
<td>0.05</td>
<td>0.09</td>
<td>0.61</td>
<td>0.00</td>
<td>0.95</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Note. $uid = i_t - i_t^* - \epsilon_{t+1}$.

Schmitt-Grohé and Uribe Exchange Rates and Uncovered Interest Differentials: The Role of Permanent Monetary Shocks
Forecast Error Variance Decomposition at Horizons between 12 and 48 months: Japan

<table>
<thead>
<tr>
<th>Source of Shock</th>
<th>Horizon 12 months</th>
<th>Horizon 24 months</th>
<th>Horizon 36 months</th>
<th>Horizon 48 months</th>
<th>Horizon 24 months</th>
<th>Horizon 36 months</th>
<th>Horizon 48 months</th>
<th>Horizon 24 months</th>
<th>Horizon 36 months</th>
<th>Horizon 48 months</th>
<th>Horizon 24 months</th>
<th>Horizon 36 months</th>
<th>Horizon 48 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Monetary Shock, X_{tm}</td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.28</td>
<td>0.73</td>
<td>0.55</td>
<td>0.39</td>
<td>0.01</td>
<td>0.01</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.26</td>
<td>0.80</td>
<td>0.58</td>
<td>0.54</td>
<td>0.01</td>
<td>0.00</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.26</td>
<td>0.82</td>
<td>0.57</td>
<td>0.50</td>
<td>0.01</td>
<td>0.00</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.26</td>
<td>0.83</td>
<td>0.56</td>
<td>0.48</td>
<td>0.02</td>
<td>0.00</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transitory Monetary Shock, z_{tm}</td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.04</td>
<td>0.15</td>
<td>0.26</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.04</td>
<td>0.10</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent Nonmonetary Shock, X_{t}</td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.13</td>
<td>0.03</td>
<td>0.12</td>
<td>0.51</td>
<td>0.99</td>
<td>0.12</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.17</td>
<td>0.05</td>
<td>0.26</td>
<td>0.32</td>
<td>0.99</td>
<td>0.08</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.18</td>
<td>0.07</td>
<td>0.33</td>
<td>0.35</td>
<td>0.98</td>
<td>0.06</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.19</td>
<td>0.08</td>
<td>0.35</td>
<td>0.38</td>
<td>0.96</td>
<td>0.05</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transitory Nonmonetary Shock, z_{t}</td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.48</td>
<td>0.08</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.45</td>
<td>0.05</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.44</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.44</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent Foreign Monetary Shock, X_{tm}^*</td>
<td></td>
</tr>
<tr>
<td>Horizon 12 months</td>
<td>0.08</td>
<td>0.01</td>
<td>0.06</td>
<td>0.07</td>
<td>0.00</td>
<td>0.85</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 24 months</td>
<td>0.08</td>
<td>0.01</td>
<td>0.03</td>
<td>0.11</td>
<td>0.00</td>
<td>0.90</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 36 months</td>
<td>0.08</td>
<td>0.01</td>
<td>0.02</td>
<td>0.12</td>
<td>0.00</td>
<td>0.93</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 48 months</td>
<td>0.08</td>
<td>0.01</td>
<td>0.02</td>
<td>0.12</td>
<td>0.00</td>
<td>0.94</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. $uid = i_t - i_t^* - \epsilon_{t+1}$.
The State Space Representation

Now including the constants, which were omitted earlier.

\[
\hat{Y}_t \equiv \begin{bmatrix}
y_t - X_t - E(y_t - X_t) \\
\pi_t - X^m_t - E(\pi_t - X^m_t) \\
i_t - X^m_t - E(i_t - X^m_t) \\
\epsilon_t - X^m_t + X^m_t* - E(\epsilon_t - X^m_t + X^m_t*) \\
i^*_t - X^m_t* - E(i^*_t - X^m_t*) \\
\end{bmatrix} \\
\]

\[
\hat{Y}_t = \sum_{i=1}^{L} B_i \hat{Y}_{t-i} + C u_t \\
u_t = \rho u_{t-1} + \psi \nu_t \\
\xi_t \equiv \begin{bmatrix}
\hat{Y}_t' \\
\hat{Y}_{t-1}' \\
\cdots \\
\hat{Y}_{t-L+1}' \\
u_t' \\
\end{bmatrix}' \\
\xi_{t+1} = F \xi_t + P \nu_{t+1} \\
o_t = A' + H' \xi_t + \mu_t \\
\]
$V = 5$, number of variables included in the vector \tilde{Y}_t,
$S = 5$, number of shocks in the vector ν_t,
$L = 6$, number of lags.

$$B \equiv [B_1 \cdots B_L]; F = \begin{bmatrix} B & C\rho \\ [I_{V(L-1)} \ 0] \ V_{(L-1),V} & \ 0 \ V_{(L-1),S} \ V \ S \ V \ (L-1) \ \rho \end{bmatrix}; P = \begin{bmatrix} C\psi \\ \phi_{V(L-1),S} \ \psi \end{bmatrix}$$

$$A = \begin{bmatrix} E(\Delta X_t) & E(i_t - \pi_t) & E(\Delta X^m_t) & E(\Delta X^m_t - \Delta X^m_{t*}) & E(\Delta X^m_{t*}) \end{bmatrix}$$

$$H' = \begin{bmatrix} M_\xi & \phi_{V,V(L-2)} & M_u \end{bmatrix}$$

$$M_\xi = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}; M_u = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Prior for the elements of the matrix A: Normal, mean(o_t), standard deviation, $\sqrt{\text{var}(o_t)}/T$, where T denotes the sample length, 531 months.
Observation equations in model with only one permanent monetary shock

\[\Delta y_t = \hat{y}_t - \hat{y}_{t-1} + \Delta X_t \]

\[r_t = \hat{i}_t - \hat{\pi}_t \]

\[\Delta i_t = \hat{i}_t - \hat{i}_{t-1} + \Delta X_t^m \]

\[\epsilon_t = \hat{\epsilon}_t + X_t^m - X_t^{m*} \]

\[i_t - i_t^* = \hat{i}_t - \hat{i}_t^* + X_t^m - X_t^{m*}. \]

Note that only the last two observation equations differ from their baseline counterparts.
Cross-Country Evidence on the Long-Run Fisher Effect

Long-Run Averages of Inflation and Nominal Interest Rates

25 OECD countries. Average sample period is 1989 to 2012.