Knowledge Diffusion, Trade and Innovation across Countries and Sectors

Jie Caia Nan Lib Ana Maria Santacreuc,1

aShanghai University of Finance and Economics
bInternational Monetary Fund
cFederal Reserve Bank of St. Louis

June 2019
Motivation

Q: What is the effect of trade on innovation, growth and welfare?

Empirical evidence:

▶ Firm-level data: Trade has a non-negligible effect on innovation.
 (Bloom et al. 2015, Autor et al. 2016, Coell et al. 2016, Santacreu and Varela 2018, . . .)

▶ Innovation and knowledge flows have effect on patterns of trade.
 (Sampson 2018, Santacreu and Zhu 2018, . . .)

Standard models of trade:

▶ Static: No productivity dynamics.

▶ One-sector models predict negligible effects of trade on innovation and welfare (competition effect=market size effect).
 (Buera and Oberfeld 2016, Atkeson and Burstein 2010, Eaton and Kortum 2006)
Motivation

Q: What is the effect of trade on innovation, growth and welfare?

This paper: Two key ingredients:
1. Sector heterogeneity.
2. Innovation and diffusion \Rightarrow Endogenous productivity dynamics.

We find that after trade liberalization:
1. R&D re-allocation towards sectors with a comparative advantage.
2. Higher dispersion in productivity.
3. Higher growth rates.
4. Knowledge spillovers reinforce these effects.

\Rightarrow Amplification of welfare gains from trade.
This Paper

▶ Develop a novel unified framework to quantify the interactions between trade, innovation and diffusion in a multi-sector environment.

▶ Calibrate the model to account for cross-country and cross-sector heterogeneity in production, innovation efficiency, and knowledge linkages.

 ▶ 19 OECD countries and 19 sectors (including a nontradable sector).

▶ Solve for the BGP of the model (abstract from transitional dynamics).

▶ Quantify effect of trade liberalization on growth, innovation and welfare.
The Model: in a Nutshell

- Multi-sector multi-country Ricardian trade model with Bertrand competition.

 ⇒ Static equilibrium, given distribution of technology and trade costs.

- Endogenous growth model. Technology (stock of knowledge) evolves endogenously through innovation and diffusion.

 ⇒ Endogenous evolution of comparative advantage and productivity.
Trade Model: Static Equilibrium

- Production input-output linkages.
- Bertrand competition.
- Trade in intermediate goods that are heterogeneous in productivity, z^j_i, distributed Frechet: $F(z^j_i) = \exp\{-T^j_{it}z^{-\theta}\}$.
- Import share country n:

$$
\pi^j_{nit} = \frac{T^j_{it} \left(c^j_{it} \right)^{-\theta} \left(d^j_{ni} \right)^{-\theta}}{\sum_{m=1}^{M} T^j_{mt} \left(c^j_{mt} \right)^{-\theta} \left(d^j_{nm} \right)^{-\theta}}.
$$

with c^j_{it} country i sector j production cost; $d^j_{ni} > 1$ iceberg transport cost.

- Growth Model: T^j_{nt} evolves endogenously over time.
Growth Model: Innovation and Diffusion

- Continuum of firms invest in R&D \(s_{nt}^j\) to create new ideas.
 - Poisson arrival rate: \(\lambda_n^j T_{nt}^j \beta_r\) with \(\beta_r \in (0, 1)\).
 - Innovation efficiency: \(\lambda_n^j T_{nt}^j\).

- Ideas are realizations of two RVs: the good to which apply and quality.

- Ideas diffuse across all country-sectors with speed \(\epsilon_{ni}^{jk}\).

- Innovation and diffusion increase stock of knowledge:

\[
\dot{T}_{nt}^j = \sum_{i=1}^{M} \sum_{k=1}^{J} \int_{-\infty}^{t} \epsilon_{ni}^{jk} e^{-\epsilon_{ni}^{jk}(t-s)} \lambda_i^k T_{is}^k (s_{is}^k)^{\beta_r} ds
\]
Diffused ideas can be adopted to produce an intermediate good in that country, sector with productivity z_{nt}^j.

An idea is adopted in n, j, if its quality surpasses the productivity of the most productive intermediate producer $(1/T_{nt}^j)$.

Successful adopters in country-sector nj pay to the innovator of that country-sector, V_{nt}^j.

$$V_{nt}^j = \int_t^\infty e^{-\int_t^s r_{nu}du} \left(1 - e^{-\varepsilon_{nn}^j(t-s)} \right) \frac{1}{T_{ns}^j} \frac{1}{1 + \theta} \sum_{i=1}^M \pi_{ins}^j X_{is}^j ds$$
BGP

- Normalize variables to be constant on the BGP.

- Positive knowledge spillovers \((\varepsilon_{ni}^{jk} > 0 \; \forall i, k, j, n) \Rightarrow T_i^j \) grows at common constant rate \(g \; \forall j, n \) (Perron-Frobenius theorem).

- BGP growth rate:

\[
\frac{\dot{T}_n^j}{T_n^j} = g \Rightarrow g \hat{T}_n^j = \sum_{i=1}^M \sum_{k=1}^J \frac{\varepsilon_{ni}^{jk}}{g + \varepsilon_{ni}^{jk}} \lambda_i^k \hat{T}_i^k (s_i^k)^{\beta_r},
\]

- Productivity growth.

\[
g_y = \frac{1}{\theta} \left(1 + \sum_{j=1}^J \alpha_j \Lambda_j \right) g.
\]
The Mechanism: Effect of Trade Liberalization

1. **Reallocation of R&D:**

\[
(s^j_n)^{1-\beta_r} \propto \lambda_n^j \sum_{i=1}^{M} \pi_{in}^j \hat{X}_i^j
\]

**Pre-liberalization: Autarky (}^d_{in} \to \infty)\]

\[
\left(\frac{s^j_n}{s^j_n'}\right)^{1-\beta_r} = \left(\frac{s^j_n}{s^j_n'}\right)^{1-\beta_r} \frac{\lambda_n^j / \lambda_n^j'}{\lambda_n^j / \lambda_n^j'} \times \frac{\hat{X}_{nn}^j / \hat{X}_{nn}^j'}{\hat{X}_{nn'}^j / \hat{X}_{nn'}^j'},
\]

exogenous innovation comparative advantage

relative domestic market size

**Post-liberalization: Free Trade (}^d_{in} \to 1)\]

\[
\left(\frac{s^j_n}{s^j_n'}\right)^{1-\beta_r} = \frac{\lambda_n^j / \lambda_n^j'}{\lambda_n^j / \lambda_n^j'} \times \frac{\hat{T}_{n}^j (\hat{c}_n^j)^{-\theta} / \hat{T}_{n'}^j (\hat{c}_n'^j)^{-\theta}}{\hat{T}_{n'}^j (\hat{c}_n'^j)^{-\theta} / \hat{T}_{n'}^j (\hat{c}_n'^j)^{-\theta}}.
\]

exogenous innovation comparative advantage

production comparative advantage
2. **Specialization and growth effects:**
 - R&D reallocates towards sectors with comparative advantage in production.
 - From growth rate in BGP, this translates into changes in comparative advantage (\hat{T}_i^j) and growth (g).

⇒ Depends on the exact pattern of diffusion.

3. **The role of knowledge spillovers:**
 - If diffusion is stronger for non-innovative country-sectors, it can **dampen** specialization effect as faster productivity convergence makes country-sectors more similar.
 - If diffusion stronger for already innovative countries, it can **amplify** the specialization effect of trade-induced R&D reallocation.
Taking the Model to the Data

- **Data**: Trade flows, R&D spending, production and population for 19 OECD countries, 19 sectors and year 2005.

- **Calibrate standard parameters**:
 - Production parameters using I/O tables from OECD.
 - Trade costs from gravity regressions at the sector level.

- **Calibrate nonstandard parameters**:
 - **New!**: Estimate diffusion parameters ε_{ni}^{jk} using patent citation data.
 - **New!**: Recursive algorithm to calibrate $\{\beta_r, \lambda_n^j, \hat{T}_n^j\}$.
Estimation of Diffusion Speed

- Our solution: New ideas ≃ patents ⇒ diffusion ≃ patent citations.
- Patent citations data to estimate a “gravity-type” citations function
 - (Adjusted) number of patents of origin and destination.
 - Propensity to cite and generate spillovers.
 - Obsolescence rate.
 - Probability of learning about a “foreign” idea: diffusion speed \(\varepsilon_{nk} \)
- Main findings:
 - Large heterogeneity in cross country-sectors diffusion speed.
 - Large number of country-sector pairs diffuse knowledge very slowly.
 - Cross-country-sector mean diffusion lag about 12 years.
 - Within-country-sector mean diffusion lag slightly over 1 year.
Faster Diffusion among “Innovative Countries”

- We find that diffusion stronger for already innovative countries ⇒ it can amplify the specialization effect of trade-induced R&D reallocation.

Note: Cited country (x-axis); citing country (y-axis). Ranked by average cited speed.
Counterfactual: 25% Uniform Trade Liberalization

How does trade liberalization affect innovation, growth and welfare?

- **Reallocation effect:**
 - *Static* model: Production shifts towards sectors with comparative advantage—“specialization effect”.
 - Our *dynamic* model: Reallocation of R&D strengthens countries’ comparative advantage, reinforcing the “specialization effect”
 - For the average country: Dispersion of \hat{T}_n^i increases from 0.7 to 0.74.
 - For the average sector: Dispersion of \hat{T}_n^j increases from 0.85 to 0.87.

- **Growth effects.**
 - Productivity growth increases from 3% to 3.4%.
Results: Welfare Gains from Trade

- Welfare gains measured in consumption-equivalent units.

- λ_i: Additional consumption the consumer needs every period to be indifferent between baseline and counterfactual BGP.

$$\int_{t=0}^{\infty} e^{-\rho t} u(C_{it}^* \lambda_i) \, dt = \int_{t=0}^{\infty} e^{-\rho t} u(C_{it}^{**}) \, dt$$

- Taking into account consumption growth on BGP, welfare gains are:

$$\log(\lambda_i) = \rho \log\left(\frac{\hat{C}_{i}^{**}}{\hat{C}_{i}^*}\right) + g_{y}^{**} - g_{y}^*$$
Results: Welfare Gains from Trade

- Welfare gains from trade model are, on average:
 - 2 times larger than in a static model.
 - 1.2 times larger than in a model with (almost) no diffusion.
- Welfare gains more disperse in the baseline than in a static model.

![Graph showing welfare gains comparison between Baseline and Static models.](image)
Conclusions

- We quantify an endogenous growth multi-sector model of trade with rich heterogeneity in production linkages, innovation and knowledge spillovers.

- Innovation and knowledge spillovers are sources of comparative advantage and result in welfare gains from trade substantially larger than what static models would predict.

- Next steps:
 - Effect of tariff changes in specific country-sectors on changes in structure of world production.
 - Model diffusion as a function of distance.
Very Related Papers

- **Perla, Tonetti and Waugh (2015):** Model of trade and diffusion with symmetric countries to characterize effect of trade on welfare and growth.

- **Buera and Oberfield (2017):** One-sector quantitative trade model of innovation, diffusion, and trade to explain growth miracles.

- **Sampson (2018):** Multi-sector trade model of innovation and learning to explain dispersion in relative productivity.

- **Somale (2018):** Multi-sector semi-endogenous growth model of innovation and trade without diffusion to quantify effect of trade on income per capita.
Reallocation of R&D across Sectors

\[
\log \left(\frac{s^j_n}{\sum_j s^j_n} \right) = \beta_0 + \beta_1 \log(ICA^j_n) + \beta_2 \log(PCA^j_n) + f_n + f_j + \mu^j_n,
\]

where \(s^j_n \) is R&D spending, \(ICA^j_n \) is the exogenous comparative advantage in innovation (i.e. based on \(\lambda^j_n \)) and \(PCA^j_n \) represents the comparative advantage in production (i.e. based on \(T^j_n(c^j_n) - \theta \)), both measured by applying the double normalization.
Reallocation of R&D across Sectors: External Validation

$$\log \left(\frac{s_{nt}^j}{\sum_j s_{nt}^j} \right) = \alpha_1 + \alpha_2 \log(RCA_{nt}^j) + f_{nt} + f_{jt} + \mu_{nt}^j.$$

Notes: This figure shows the coefficient of a 5-year rolling window regression of the log of R&D share on the log of revealed comparative advantage, together with 95% confidence intervals.
Welfare Gains from Trade
Calibration Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>4.00</td>
<td>Trade elasticity</td>
</tr>
<tr>
<td>g</td>
<td>0.12</td>
<td>Growth of stock of knowledge</td>
</tr>
<tr>
<td>g_y</td>
<td>0.028</td>
<td>Growth of income per capita</td>
</tr>
<tr>
<td>ρ</td>
<td>0.90</td>
<td>Discount factor</td>
</tr>
<tr>
<td>β_r</td>
<td>0.45</td>
<td>Elasticity of innovation</td>
</tr>
</tbody>
</table>

(a) Efficiency of innovation (λ_n^i)
(b) Stock of knowledge (\hat{T}_n^i)
Estimation of Diffusion Speed

Our solution: New ideas \simeq patents \rightarrow diffusion \simeq patent citations.

Estimate a “gravity-type” citations function

$$C_{ni}^{jk}(t, s) = \phi_{n,t}^{j} \delta_{i,s}^{k} (\psi_{i,s}^{k} P_{i,s}^{k})^{\beta_{g}} (\psi_{n,t}^{j} P_{n,t}^{j})^{\beta_{l}} e^{-\sum_{\tau=s}^{t} O_{i,\tau}^{k} \tilde{P}_{i,\tau}^{k}} \left(1 - e^{-\varepsilon_{ni}^{jk}(t-s)}\right).$$

Jointly estimate ε_{ni}^{jk} together with other factors, such as propensity to cite ($\phi_{n,t}^{j}$), spillover effect ($\delta_{i,s}^{k}$), propensity to patent ($\psi_{i,s}^{k}$), obsolescence rate ($O_{i,s}^{k}$).
List of Industries

List of countries: Australia, Austria, Belgium, Canada, Finland, France, Germany, Israel, Italy, Japan, Korea, the Netherlands, New Zealand, Norway, Poland, Portugal, Spain, the United Kingdom, and the United States.

<table>
<thead>
<tr>
<th>Sector</th>
<th>ISIC</th>
<th>Industry Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C01T05</td>
<td>Agriculture, Hunting, Forestry and Fishing</td>
</tr>
<tr>
<td>2</td>
<td>C10T14</td>
<td>Mining and Quarrying</td>
</tr>
<tr>
<td>3</td>
<td>C15T16</td>
<td>Food products, beverages and tobacco</td>
</tr>
<tr>
<td>4</td>
<td>C17T19</td>
<td>Textiles, textile products, leather and footwear</td>
</tr>
<tr>
<td>5</td>
<td>C20</td>
<td>Wood and products of wood and cork</td>
</tr>
<tr>
<td>6</td>
<td>C21T22</td>
<td>Pulp, paper, paper products, printing and publishing</td>
</tr>
<tr>
<td>7</td>
<td>C23</td>
<td>Coke, refined petroleum products and nuclear fuel</td>
</tr>
<tr>
<td>8</td>
<td>C24</td>
<td>Chemicals and chemical products</td>
</tr>
<tr>
<td>9</td>
<td>C25</td>
<td>Rubber and plastics products</td>
</tr>
<tr>
<td>10</td>
<td>C26</td>
<td>Other non-metallic mineral products</td>
</tr>
<tr>
<td>11</td>
<td>C27</td>
<td>Basic metals</td>
</tr>
<tr>
<td>12</td>
<td>C28</td>
<td>Fabricated metal products, except machinery and equipment</td>
</tr>
<tr>
<td>13</td>
<td>C29</td>
<td>Machinery and equipment, nec</td>
</tr>
<tr>
<td>14</td>
<td>C30T33X</td>
<td>Computer, Electronic and optical equipment</td>
</tr>
<tr>
<td>15</td>
<td>C31</td>
<td>Electrical machinery and apparatus, n.e.c.</td>
</tr>
<tr>
<td>16</td>
<td>C34</td>
<td>Motor vehicles, trailers and semi-trailers</td>
</tr>
<tr>
<td>17</td>
<td>C35</td>
<td>Other transport equipment</td>
</tr>
<tr>
<td>18</td>
<td>C36T37</td>
<td>Manufacturing n.e.c. and recycling</td>
</tr>
<tr>
<td>19</td>
<td>C40T95</td>
<td>Nontradables</td>
</tr>
</tbody>
</table>
Results: Welfare Gains from Trade

<table>
<thead>
<tr>
<th>Model</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>22.63</td>
<td>6.90</td>
<td>8.33</td>
<td>34.27</td>
</tr>
<tr>
<td>Static</td>
<td>10.92</td>
<td>5.87</td>
<td>0.58</td>
<td>21.26</td>
</tr>
<tr>
<td>No diffusion</td>
<td>18.76</td>
<td>6.80</td>
<td>6.23</td>
<td>30.57</td>
</tr>
</tbody>
</table>