Fiscal Multipliers and Financial Crises

Miguel Faria-e-Castro
Federal Reserve Bank of St. Louis

49th Konstanz Seminar
Reichenau, May 2018

The views expressed on this presentation do not necessarily reflect the positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.
Fiscal policy response to the 2008 financial crisis

- “Conventional” fiscal stimulus
 1. Govt purchases (Drautzburg & Uhlig ’11; Conley & Dupor ’13)
 2. Transfers to households (Oh & Reis ’12; Parker et al. ’13; Kaplan & Violante ’14)

- Financial sector interventions
 3. Equity injections (Blinder & Zandi ’10; Philippon & Schnabl ’13)
 4. Credit guarantees (Philippon & Skreta ’12; Lucas ’16)

Large debate on the effectiveness and composition of the response

This paper:

1. How important was the fiscal policy response?
2. Which tools were the most important?
Approach and Results

1. Structural model of fiscal policy
 - Potential stabilization roles for each of the tools
 - State dependent effects of shocks and policies

2. Quantitative Exercise
 - Calibrated model + data on fiscal policy response
 - Estimate structural shocks given policy response
 - Study counterfactuals
 - Crisis and Great Recession without fiscal response

3. Results:
 - Aggregate consumption falls by twice as much w/o policy
 - Transfers and equity injections most important
 - Fiscal multipliers extremely state dependent
 - New transmission channels for fiscal policy
Nominal Rigidities \implies Government purchases

Incomplete Markets \implies Transfers

(Frictional) Financial Sector \implies Bank Recaps.

Credit Risk & Default \implies Credit Guarantees
Model: Key Ingredients

Borrowers

1. Borrow in long-term debt B_t^b, purchase houses h_t
2. Family construct $i \in [0, 1]$, housing quality shocks $\nu(i) \sim F_t$
3. Fraction of borrowers m has to move every period
 3.1 Prepay debt + sell house if $B_{t-1}^b \leq p_t^h \nu_t(i) h_{t-1}$, or
 3.2 Default + lose house
4. New borrowing subject to LTV constraint

$$B_t^{b,\text{new}} \leq \theta^{\text{LTV}} p_t^h h_t$$

Banks

1. Invest in mortgages, financed w/ deposits and retained earnings
2. Subject to iid shock on portfolio return, default if $V_t \leq 0$
3. Market leverage constraint

$$\kappa Q_t^b B_t^b \leq V_t$$
Impulse and Propagation

- Aggregate shocks:
 1. TFP A_t
 2. Financial shock σ_t

 Household Default Rate$_t = f(LTV_t, \sigma_t)$

- Financial shock: defaults ↑
 1. Bank equity ↓
 2. If bank constraint binds \Rightarrow spreads rise, lending falls
 3. Disposable income for borrowers ↓
 4. If borrower constraint binds \Rightarrow aggregate consumption ↓

Shock transmission depends on **bank leverage** and **household leverage**
State Dependence: Financial Shock with Low Leverage

[Graphs showing changes in GDP, Consumer Borrower, House Price, and Bank Cost of Funds over quarters after a crisis.]
State Dependence: Financial Shock with High Leverage

GDP

Cons. Borrower

House Price

Bank Cost of Funds

- **Low lev.**
- **Hi lev.**
1. Calibrate model to U.S. pre-crisis
 - Match moments on household and bank balance sheets

2. Use data to estimate sequences of structural shocks
 \[
 \{A_t, \sigma_t\}_{t=2000Q1}^{T=2015Q4}
 \]
 - \(Y^T \equiv \text{Observed Macro Variables}^T = \{C_t, \text{spread}_t\}_t^T\)
 - \(\Omega^T \equiv \text{Observed Fiscal Policy Response}^T = \{G_t, T^b_t, x^k_t, s^d_t\}_t^T\)

3. What \(\{\hat{A}_t, \hat{\sigma}_t\}_t^T\) make the model match \(Y^T\) given \(\Omega^T\)?

4. Use estimated \(\{\hat{A}_t, \hat{\sigma}_t\}_t^T\) to study counterfactual paths for \(\Omega^T\)
Fiscal Policy Data

- **G**: ARRA ’09 contracts, Medicaid and Education spending

- **T**: ESA ’08 tax rebates, HERA ’08 tax credits + NSP + Cash for Clunkers, ARRA ’09 social transfers + tax cuts, TARP ’08 housing programs (MHA, HHF, FHA-Refi)

- **x**: TARP ’08 equity injection programs (CPP, CDCI, PPIP, AIG, BofA/Citi), auto bailout (AIFP, ASSP), GSE bailout (PSI)

- **s**: TARP ’08 credit guarantees (TABSLF, BofA/Citi), TLGP ’08 credit guarantees
Main Counterfactual: No Fiscal Policy
Policy Decomposition

Aggregate Consumption

% deviation from trend/SS

2007Q1 2008Q3 2012Q4

-8 -6 -4 -2 0 2 4

Data
No Purchases
No Transfers
No Bank Recaps
No Guarantees
Time Series for Fiscal Multipliers

GDP Multiplier, Purchases

GDP Multiplier, Transfers

GDP Multiplier, Recaps

GDP Multiplier, Guarantees
State Dependent Multipliers: Mechanism

Two channels:

1. Borrower Constraint \Rightarrow standard MPC channel

2. Borrower Const. $+$ Bank Const. \Rightarrow new channel

- Transfers \Rightarrow house prices ↑ (only when borrowers are constrained)
- Default rates fall, banks post fewer losses
- Lending ↑, spreads ↓ (only when banks are constrained)
- Disposable income ↑

New channel active when both constraints bind
Conclusion

This Paper

- Analysis of fiscal policy response to the Great Recession
- Structural Model + Data
- BANK + MONK

Contribution

- Conventional stimulus and financial sector interventions
 - Quantitative evaluation
 - Important for normative analysis
- New transmission channels for fiscal policy
 - Household-bank balance sheet interactions
 - State dependent effects
Appendix
Borrowers: Debt and Default

- Face value B_{t-1}^b, coupon rate γ
- Family construct (Landvoigt, 2015)

1. Borrower enters period with states

 $$h_{t-1}, B_{t-1}^b$$

2. Continuum of members $i \in [0, 1]$, each with

 $$h_{t-1}, B_{t-1}^b, \nu_t(i)$$

 where $\nu_t(i) \sim F_t^b \in [0, \infty)$

3. Each agent i has to move with prob. m, she can:
 3.1 Prepay if $B_{t-1}^b \leq \nu_t(i)p_t^h h_{t-1}$, sell house
 3.2 Default, lose collateral
Borrower Family Problem

\[V_t^b(B_{t-1}^b, h_{t-1}) = \max_{c_t^b, n_t^b, h_t, B_t^b, \iota(\nu)} \left\{ u(c_t^b, n_t^b) + \xi^b \log(h_t) + \beta \mathbb{E}_t V_{t+1}^b \right\} \]

subject to budget constraint

\[c_t^b + \gamma \frac{B_{t-1}^b}{\Pi_t} \int (1 - m) + m[1 - \iota(\nu)]dF_t^b(\nu) + p_t h_t \leq (1 - \tau_t)w_t n_t^b + mQ_t B_t^{b,\text{new}} + p_t h_{t-1} \int (1 - m)\nu + m\nu[1 - \iota(\nu)]dF_t^b(\nu) + T_t^b \]

and borrowing constraint

\[B_t^{b,\text{new}} \leq \theta^{\text{max ltv}} p_t h_t \]

\(\triangleright\) Back
Borrower Default

Default iff \(\nu \leq \nu^*_t \),

\[
\nu^*_t = \frac{B^b_{t-1}}{\Pi_t p_t h_{t-1}} \simeq \text{Loan-to-Value}
\]

- \(F_t^b = \text{Beta}(1, \sigma^b_t) \)
- \(\sigma_t^b \sim \text{two-state Markov} \)
- Mean preserving spread

Lenders earn (per unit of debt)

\[
Z^{\text{loans}}_t = (1 - m)[\gamma + (1 - \gamma) Q^b_t] + m
\]

\[
\begin{aligned}
&1 - F^b_t(\nu^*_t) + (1 - \lambda^b) \int_0^{\nu^*_t} \nu p_t h_{t-1} - 1 / \Pi_t \ dF^b_t \\
&\text{not moving} \\
&\text{movers repay} \\
&\text{default}
\end{aligned}
\]
Financial Intermediaries

- Fixed income portfolios, maturity transformation, risky deposits
- Fraction $1 - \theta$ of earnings paid out as dividends every period
- Invest in loan securities b_t, raise deposits d_t

Problem for intermediary $j \in [0, 1]$ with current earnings $e_{j,t}$

$$V^k_t(e_{j,t}) = \max_{b_{j,t}, d_{j,t}} \left\{ (1 - \theta) e_{j,t} + \mathbb{E}_t \left[\Lambda^s_{t,t+1} \max \{0, V^k_{t+1}(e_{j,t+1})\} \right] \right\}$$

current mkt value

subject to

flow of funds: $Q^b_t b_{j,t} = [\theta e_{j,t}(1 + x^k_t) - \text{Govt Payments}_t] + Q^d_t d_{j,t}$

capital req.: $\kappa Q^b_t b_{j,t} \leq \mathbb{E}_t \left[\Lambda^s_{t,t+1} \max \{0, V^k_{t+1}(e_{j,t+1})\} \right]$

LoM earnings: $e_{j,t+1} = (u_{j,t+1} Z^\text{loans}_{t+1} b_{j,t} - d_{j,t}) / \Pi_{t+1}$
Financial Intermediaries

- \(u_{j,t} \sim F^d \subseteq [u, \bar{u}] \)
- Default iff
 \[u_{j,t} < u_t^* \equiv \frac{d_{j,t-1}}{Z^\text{loans}_t b_{j,t-1}} \approx \text{Leverage} \]
- Aggregation \(\Rightarrow \) representative bank
 \[\int_{[0,1]} \mathbb{E}_t \left[\Lambda^{s}_{t,t+1} \prod_{t+1} \max \{0, V^k_{t+1}(e_{j,t+1})\} \right] \, dj \equiv \Phi_t \theta E_t \]
- Spreads reflect Credit Risk + Current + Future binding constraints
- Long-term debt \(\Rightarrow \) Pecuniary Externalities \(\Rightarrow \) Financial Accelerator
- Payoff per unit of deposits,

\[
Z^{\text{deposits}}_t = s^d_t + (1-s^d_t) \begin{cases}
1 - F^d(u_t^*) + (1 - \lambda^d) \int_0^{u_t^*} u Z^\text{loans}_t \frac{B^b_{t-1}}{D_{t-1}} \, dF^d \\
\text{guaranteed} & \text{repaid} & \text{liquidated}
\end{cases}
\]
Closing the Model

Standard DSGE model w/ nominal rigidities

- Producers \rightarrow Phillips Curve
- Savers \rightarrow Euler Equation (IS)
- Housing in fixed supply, $h_t = 1$
- Central Bank \rightarrow Taylor Rule

$$
\frac{1}{Q_t} = \frac{1}{Q} \left[\frac{\Pi_t}{\Pi} \right] \phi_\pi \left[\frac{Y_t}{Y} \right] \phi_y
$$

- Aggregate resource constraint,

$$
C_t + G_t + DWL \ Default_t = A_t N_t \left[1 - d(\Pi_t) \right] = Y_t \text{ Menu Costs}
$$
Fiscal Authority

Budget constraint,

\[\tau_t Y_t + Q_t B_t^g - \tilde{G} - \frac{B_{t-1}^g}{\Pi_t} = \text{Net Cost from Discretionary Measures}_t \]

Standard Surplus

Fiscal rule for taxes,

\[\tau_t = \bar{\tau} \left(\frac{B_{t-1}^g}{B_t^g} \right)^{\phi_{\tau}} \]

Net Cost from Discretionary Measures:

\[(G_t - \tilde{G}) + \chi T_t^b + (x_t^k \theta E_t - \text{Income from Recaps}) + s_t^d \frac{D_{t-1}}{\Pi_t} \times (1 - \text{Recovery Rate}_t) \]
Calibration

1. **Crises**

\[\sigma^b_t = [\sigma^b_{t,\text{normal}}, \sigma^b_{t,\text{crisis}}]^T \quad \text{and} \quad P^\sigma = \begin{bmatrix} .995 & .005 \\ .15 & .85 \end{bmatrix} \]

2. **Households**

<table>
<thead>
<tr>
<th>Target</th>
<th>Target Parameter</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction Borrowers</td>
<td>Parker et al. (2013)</td>
<td>(\chi = 0.45)</td>
</tr>
<tr>
<td>Debt Maturity</td>
<td>PTI of 30%</td>
<td>(\gamma = 0.035)</td>
</tr>
<tr>
<td>Max LTV Ratio</td>
<td>85%</td>
<td>(m = 0.0871)</td>
</tr>
<tr>
<td>Debt/GDP</td>
<td>80%</td>
<td>(\xi = 0.0945)</td>
</tr>
<tr>
<td>Ann. Delinquency Rate</td>
<td>2%</td>
<td>(\sigma^b_{t,\text{normal}} = 3.819)</td>
</tr>
</tbody>
</table>

3. **Banks**

\[F^d(u) = \frac{u^\sigma - \underline{u}^\sigma}{\bar{u}^\sigma - \underline{u}^\sigma} \]

<table>
<thead>
<tr>
<th>Target</th>
<th>Target</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Leverage</td>
<td>10</td>
<td>(\kappa = 0.1)</td>
</tr>
<tr>
<td>Payout Rate</td>
<td>15%</td>
<td>(\theta = 0.90)</td>
</tr>
<tr>
<td>Avg. Lending Spread</td>
<td>2%</td>
<td>(\varpi = 0.0120)</td>
</tr>
<tr>
<td>CDS-Implied Def. Prob.</td>
<td>2% in recessions</td>
<td>(u = 0.91, \sigma^d = 1)</td>
</tr>
</tbody>
</table>
Smoothed Shocks

TFP

2000Q1 2008Q3 2015Q4

% Deviation from SS

Credit Risk Shock

2000Q1 2008Q3 2015Q4

% Deviation from SS